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ABSTRACT

In this paper, we adress the question of decoding cognitive in-

formation from functional Magnetic Resonance (MR) images

using classification techniques. The main bottleneck for ac-

curate prediction is the selection of informative features (vox-

els). We develop a multivariate approach based on a mutual

information criterion, estimated by nearest neighbors. This

method can handle a large number of dimensions and is able

to detect the non-linear correlations between the features and

the label. We show that, by using MI-based feature selection,

we can achieve better perfomance together with sparse fea-

ture selection, and thus a better understanding of information

coding within the brain than the reference method which is a

mass univariate selection (ANOVA).

Index Terms— Features selection, Mutual information,

Brain reading, Classification, fMRI

1. INTRODUCTION

Over the past five years, there has been considerable interest

in classifying brain activity from functional MR (fMRI) im-

ages to compare the response to different conditions and find

which brain regions discriminate between two states (”brain-

reading”, see [1]). This technique consists in finding a com-

bination of voxel-based (or ROI-based) responses that best

predicts some target information (e.g. the stimulation con-

dition). This problem, as a classification problem in high-

dimension spaces (fMRI images are about N = 1000− 2000
voxels when considering ROIs, but are most typically of 104

to 105 voxels when considering the whole brain), is plagued

with the curse of dimensionality and thus requires the use of

features selection. Some standard techniques for features se-

lection have been used in fMRI (see [2] for review) : Anova,

possibly in conjunction with spatial averaging (parcellation),

univariate mutual information, but also multivariate methods,

e.g. Singular Value Decomposition (SVD), Manova.

Mutual Information (MI) is known to characterize the de-

pendence between random variables beyond the second or-

der moment (correlation) and can be used for multivariate se-

lection, by choosing the features which jointly maximize the

prediction given a set of previously selected features. Given

the few number of samples (here, the number of fMRI im-

ages used for learning), MI cannot be reliably estimated by

the joint density of the features and the target ; in the case of

high dimensional problem, some better estimators are based

on the k nearest neighbors (knn) (see [3]), which can handle

a large number of dimensions, with reasonable variance.

Rossi et al. ([4]) have developed a features selection tech-

nique based on Mutual Information (MI) for regression in

spaces of very high dimension. In this work, we adapted this

method to classification problem in which the target variable

Y takes discrete values. Our approach can be seen as an im-

provement of the method developed in [5]. This new algo-

rithm (MIFS) has been tested on simulated and real data and

the selected features have been used in conjunction with SVM

and RVM classifiers. The performances in generalization are

shown to outperform ANOVA feature selection.

2. METHODS

2.1. Estimation of Mutual Information

Let X be a set of random variables that may be used to

explain Y . The entropy of X is defined as H(X) =
− ∫

P (x) logP (x)dx, and the MI between X and Y is de-

fined as the Kullback-Leibler divergence between the distri-

butions P (X,Y ) and P (X)× P (Y ) :

MI(X,Y ) =
∫

x,y

P (x, y)× log
P (x, y)
P (x)P (y)

dxdy

Let ε be twice the distance from a point z in Z to is kth near-

est neighbor in the space Z = (X,Y ) (with the maximum

norm). Let d be the dimension of X and cd the volume of the

d-dimensional unit ball. Kraskov et al. ([3]) propose the fol-

lowing estimators of H(X) and MI(X,Y ) where Y is real:

H(X) = −ψ(k) + ψ(N) + log(cd) +
d

N

N∑
i=1

log(ε(i))

MI(X,Y ) = ψ(k)+ψ(N)− 1
N

N∑
i=1

(ψ(nx+1)+ψ(ny+1))

whereψ is the digamma function : ψ(x) = Γ(x)−1dΓ(x)/dx,

and nx (respectively ny) is the number of points with a dis-

tance to z in the spaceX (respectively in the space Y ) strictly

inferior to ε/2.
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Let us adapt it to the case where Y is finite : MI is equiv-

alently defined as MI(X,Y ) = H(X)−H(X|Y ) :

MI(X,Y ) = H(X)−
lmax∑
l=1

H(X|Y = l)p(Y = l)

Then, let A = log(cdx)+ dx
Nl

∑N
i=1 log(ε(i)), n

l
x(i) the num-

ber of points between x(i) and its knn which have the same

label l, and Nl the number of points having the label l :

H(X|Y = l) = − 1
Nl

Nl∑
i=1

ψ(nl
x(i) + 1) + ψ(Nl) +A , thus

MI(X,Y ) = B +
1
N

N∑
i=1

(
ψ(nl(i)

x (i) + 1)− ψ(Nl(i))
)

with B = ψ(N)− ψ(k).

2.2. Features selection

The features selection process is adapted from [4] and [6] (see

Fig. 1). Firstly, let S and R be the sets of selected features

and the group of features that might be chosen : we start with

S = ∅ and R = {xi}, i = 1..N and the algorithm will stop

when R is empty. This algorithm uses an hybrid stepwise

selection. The forward strategy adds at each step the most

informative feature given the previously selected ones. The

backward strategy removes from R all the features which are

not informative at this step : we indeed assume that those

features will not be informative in the next steps.

In order to select a feature, we compute at each step, for

each dimension x in R, the value MI1 = MI(S
⋃{x}, Y ),

which yields the amount of information about Y present in

S and x. Let xπ be a permutation of the values of x across

samples, and let MI2 = MI(S
⋃{xπ}, Y ). The distribu-

tion of MI2 is computed by drawing randomly P permuta-

tions. We obtain the following approximate p-value : p =
1
P

∑P
k=1(MI1 < MI2,k). If this p-value is below a pre-

defined threshold α, one can consider that this dimension is

informative; otherwise we can remove it from R. In order to

avoid redundancy of information, we also remove all the pre-

viously pre-selected features x for which MI(S
⋃{x}, Y ) <

MI(S, Y ) Finally, we select the dimension with the highest

value of MI1 and keep the other pre-selected ones in R.

In this algorithm, three parameters are used :

The threshold for the p-value α: typical values are between

0.05 and 0.001. It is the most important factor in the algo-

rithm and can be interpreted as a quality control that we re-

quire for the dimensions to be selected : a low value of α
will discard usefull information, while a high value of α will

allow the inclusion of weakly informative features, thus yield-

ing overfitting.

The number of neighbors in the MI estimator k: typical

values are between 10 and 30 (see Kraskov et al. [3]).

The number of permutations P : chosen given the value of

α, by P � 1
α .

We also combine the feature selection by MI with a

preprocessing, parcellation, which allows important unsu-

pervised reduction of the dimension of X. Parcellation uses

hierarchical agglomerative clustering to create groups of vox-

els which have similar time courses : from 1500 voxels, we

will create about 50 parcels. The signal is averaged in each

parcel.

Finally, cross-validation is used to obtain a performance

in generalization, and to compare the different features se-

lection techniques. We use two types of classifiers: SVM

(Support Vector Machines) with a linear Kernel (see [7]), and

Relevance Vector Machines) with a linear Kernel (see [8]).

Fig. 1. Flowchart of the MISF algorithm.

3. EXPERIMENTS

We have tested different algorithms of selection on real and

simulated data: Knn (MI algorithm); Anova-ltd (Anova

with a number of selected features equal to the number of

features selected by the MI algorithm); Anova (Anova with a

number of selected features equal to 1/5 of the set of features,

or fixed by a threshold on the p-value).

3.1. Simulated Data

We have tested the selection on simulated data inspired by

Friedmann (see [9]) :

Y = 10 sinX1.X2 + 20(X3 − 0.5)2 + 10X4 + 5X5 + ε

where ε is a gaussian noise with an unitary variance, X is

100-dimensional , and we discretize Y into 4 labels : y ∈
{1, 2, 3, 4}. The dataset is split into two subsets: the train-

ing set (3/4 of the data) on which we perform the selection

process and train the classifier, and the test set, on which we

test the performance in generalization of the classifier. The

593



chance level is 25% for 4 labels, and the tests are performed

10 times in order to have a good assessment of the perfor-

mances. We take α = 0.05 (then P = 400) and k = 20.

3.2. Results on Simulated Data

The results on simulated data show a slight improvement for

the performance in generalization, by using the MIFS algo-

rithm (see Fig. 2).

Knn Anova-ltd Anova

SVM

Mean 54% 53% 46%
Std 11% 10% 13%

RVM

Mean 53% 52% 44%
Std 11% 12% 14%

Size Selection 2.5 2.5 20

Fig. 2. Comparison (mean and standard deviation) of the dif-

ferent methods of reduction of dimensions for simulated data,

for α = 0.05, P = 400 and k = 20. The MI feature selection

performs sligthy better than the other techniques.

3.3. Real Data

We have applied the algorithm MI on a real fMRI data set.

This dataset comprises images acquired while the subjects

were viewing some chairs of different sizes and shapes (see

[10] for more details on the data). We split our data set into

two parts, a training set (3/4 of the data) and a test set(1/4

of the data), and we applied a features selection and set up a

classifier, to check if we could retrieve which size of object

is seen, whatever the shape. This problem is an intra-subject

problem: we work only on the data of one subject, and we

make an average of the results across 12 subjects.

3.4. Results on Real Data

Effect of α: The parameter α has a strong influence on the

outcome of the selection. We have studied the size of the

selection for different values of α (see Fig. 3), on the set

of images of subject 6, where we have pre-selected the 300
voxels with the highest F-score in Anova, in order to reduce

the computation time. We can see that the final number of

features depends on α. When α increases, the selection is

less strict, and the number of selected features is higher. The

performance in generalization of the selection of features is

constant, which seems to imply that the first set of 4 vox-

els contains all the information needed to classify the images.

However, the voxels added by increasing α do not seem to

decrease the performance in generalization for the SVM. It is

interesting to notice that for very low threshold (i.e. for a low

α), our method is more efficient than the reference method,

but is more time consuming. In the following parts of the

study, we will keep a medium threshold ( α = 0.05) to allow

an easier computation of the results.

α 10−3 5.10−3 10−2 5.10−2 0.1
P 104 104 103 5.102 102

Size MI 4 6 6 7 8

Size Anova-Pval 75 122 148 256 300

RVM

Knn (%) 78 72 72 61 61

Anova-Pval (%) 72 78 72 83 67

Anova-60 (%) 67

SVM

Knn (%) 89 94 94 89 89
Anova-Pval (%) 78 83 83 83 78

Anova-60 (%) 83

Fig. 3. Size of the selection and performances in generaliza-

tion for different values of α and for the reference method

(ANOVA-60, with 60 voxels selected, and Anova-Pval with

the threshold for the p-value equal to alpha), on the data of

subject 12. The MI selection gives better results for low val-

ues of α, and the SVM is globally more efficient than the

RVM.

Comparison of different methods: We have studied the differ-

ent methods with voxels and parcels (Fig. 4). The results were

averaged over 5 trials and 12 subjects, and we use k = 20,

α = 0.05 and P = 400. In Fig. 4, we can see that when

using RVM, the MI algorithm gives equivalent results than

the reference method (for the same number of voxels than se-

lected by the MI algorithm, ANOVA is less efficient). In the

bottom part of Fig. 4, we can notice that, when using SVM

classification, the reference method performs better than the

MI algorithm, and SVM performs better than RVM for classi-

fication. However, those results are to be related to the num-

ber of selected voxels : for both SVM and RVM, with an

equal number of selected voxels, given by the MI algorithm,

our method is more efficient than the ANOVA. The parcella-

tion is less accurate than the use of voxels, but we selected

very few parcels (about 2 or 3). However, there is a very high

variability in performances of the methods between subjects.

4. DISCUSSION

4.1. Classification and Mutual Information

In this paper, we have compared different methods for clas-

sification and to elaborate a method of features selection by

using MI criterion. It seems that MI is an interesting way to

find areas of activity in the brain by selecting very few, but

strongly informative, voxels (from 1500 to 8 voxels). In our

experiments, RVM classifiers are less efficient than SVM.
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Fig. 4. Comparison of the different methods of selection for

all the subject and 5 resamplings per subject. The chance level

is 33%. The different approachs give similar results, but the

reference method, associated with SVM slightly outperforms

the others.

4.2. Neuroscientific aspects

The MI algorithm seems to be an interesting alternative to

the classical mass-univariate method currently used in brain-

reading. The small number of selected voxels allows an easy

interpretation of the results : the selected areas are reduced to

very few voxels, and seem to be the areas that are the most

strongly related to the cognitive tasks. We can see (fig. 5)

that MIFS selects only few voxels at the core of activated ar-

eas (by removing the redundant voxels). The most predictive

regions for object size seems to be the occipital part of the

LOC. By trying to predict the shape of the chairs viewed by

the subjects, we obtain a classification rate of 75% (85% for

sizes), but the informations to be extracted are more complex.

These results emphazise one of the aims of the MIFS algo-

rithm which is to find relatively precise regions, in order to

better understand the discriminative patterns of functional ac-

tivity.
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